Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion.

Identifieur interne : 002883 ( Main/Exploration ); précédent : 002882; suivant : 002884

The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion.

Auteurs : Lan T. Tran [Canada] ; John S. Taylor ; C Peter Constabel

Source :

RBID : pubmed:22897796

Descripteurs français

English descriptors

Abstract

BACKGROUND

Plant polyphenol oxidases (PPOs) are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals.

RESULTS

Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss) and Glycine max (soybean) each had 11 genes. Populus trichocarpa (poplar) contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae) genomes or Arabidopsis (A. lyrata and A. thaliana). We found that many PPOs contained one or two introns often near the 3' terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes.

CONCLUSION

Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic relationships based on primary sequence data. The dynamic nature of this gene family differentiates PPO from other oxidative enzymes, and is consistent with a protein important for a diversity of functions relating to environmental adaptation.


DOI: 10.1186/1471-2164-13-395
PubMed: 22897796
PubMed Central: PMC3472199


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion.</title>
<author>
<name sortKey="Tran, Lan T" sort="Tran, Lan T" uniqKey="Tran L" first="Lan T" last="Tran">Lan T. Tran</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Station CSC, Victoria, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Station CSC, Victoria, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Taylor, John S" sort="Taylor, John S" uniqKey="Taylor J" first="John S" last="Taylor">John S. Taylor</name>
</author>
<author>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22897796</idno>
<idno type="pmid">22897796</idno>
<idno type="doi">10.1186/1471-2164-13-395</idno>
<idno type="pmc">PMC3472199</idno>
<idno type="wicri:Area/Main/Corpus">002926</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002926</idno>
<idno type="wicri:Area/Main/Curation">002926</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002926</idno>
<idno type="wicri:Area/Main/Exploration">002926</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion.</title>
<author>
<name sortKey="Tran, Lan T" sort="Tran, Lan T" uniqKey="Tran L" first="Lan T" last="Tran">Lan T. Tran</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Station CSC, Victoria, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Biology and Department of Biology, University of Victoria, Station CSC, Victoria, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Taylor, John S" sort="Taylor, John S" uniqKey="Taylor J" first="John S" last="Taylor">John S. Taylor</name>
</author>
<author>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bryophyta (classification)</term>
<term>Bryophyta (genetics)</term>
<term>Catechol Oxidase (genetics)</term>
<term>Chlorophyta (classification)</term>
<term>Chlorophyta (genetics)</term>
<term>Embryophyta (classification)</term>
<term>Embryophyta (genetics)</term>
<term>Genome, Plant (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phylogeny (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bryophyta (classification)</term>
<term>Bryophyta (génétique)</term>
<term>Catechol oxidase (génétique)</term>
<term>Chlorophyta (classification)</term>
<term>Chlorophyta (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Embryophyta (classification)</term>
<term>Embryophyta (génétique)</term>
<term>Génome végétal (génétique)</term>
<term>Phylogenèse (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Catechol Oxidase</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bryophyta</term>
<term>Chlorophyta</term>
<term>Embryophyta</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bryophyta</term>
<term>Chlorophyta</term>
<term>Embryophyta</term>
<term>Genome, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bryophyta</term>
<term>Catechol oxidase</term>
<term>Chlorophyta</term>
<term>Embryophyta</term>
<term>Génome végétal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Phylogenèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Plant polyphenol oxidases (PPOs) are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss) and Glycine max (soybean) each had 11 genes. Populus trichocarpa (poplar) contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae) genomes or Arabidopsis (A. lyrata and A. thaliana). We found that many PPOs contained one or two introns often near the 3' terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic relationships based on primary sequence data. The dynamic nature of this gene family differentiates PPO from other oxidative enzymes, and is consistent with a protein important for a diversity of functions relating to environmental adaptation.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22897796</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>02</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion.</ArticleTitle>
<Pagination>
<MedlinePgn>395</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-13-395</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Plant polyphenol oxidases (PPOs) are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss) and Glycine max (soybean) each had 11 genes. Populus trichocarpa (poplar) contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae) genomes or Arabidopsis (A. lyrata and A. thaliana). We found that many PPOs contained one or two introns often near the 3' terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic relationships based on primary sequence data. The dynamic nature of this gene family differentiates PPO from other oxidative enzymes, and is consistent with a protein important for a diversity of functions relating to environmental adaptation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tran</LastName>
<ForeName>Lan T</ForeName>
<Initials>LT</Initials>
<AffiliationInfo>
<Affiliation>Centre for Forest Biology and Department of Biology, University of Victoria, Station CSC, Victoria, BC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Taylor</LastName>
<ForeName>John S</ForeName>
<Initials>JS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Constabel</LastName>
<ForeName>C Peter</ForeName>
<Initials>CP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AF263611</AccessionNumber>
<AccessionNumber>AY665681</AccessionNumber>
<AccessionNumber>AY665682</AccessionNumber>
</AccessionNumberList>
</DataBank>
<DataBank>
<DataBankName>RefSeq</DataBankName>
<AccessionNumberList>
<AccessionNumber>YP_001521388</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>08</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 1.10.3.1</RegistryNumber>
<NameOfSubstance UI="D004156">Catechol Oxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D044002" MajorTopicYN="N">Bryophyta</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004156" MajorTopicYN="N">Catechol Oxidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000460" MajorTopicYN="N">Chlorophyta</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019669" MajorTopicYN="N">Embryophyta</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>02</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>08</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22897796</ArticleId>
<ArticleId IdType="pii">1471-2164-13-395</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-13-395</ArticleId>
<ArticleId IdType="pmc">PMC3472199</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 1999 May;8(5):978-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10338008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jul;14(7):1441-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11647-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16868079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 May;65(9):1199-221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15184005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jul;187(2):273-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20642725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):334-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19605551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1163-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 12;318(5848):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):92-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):953-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 2006 Jan;100(1):108-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Jul 1;12(4):570-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20636899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Apr 24;452(7190):991-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18432245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 20;326(5956):1112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2003 Nov;1(6):463-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17134404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Aug;63(7):753-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12877915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Mar;113(3):707-718</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:223-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Jun;133(2):266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18331405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 May;99(1):317-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 May;114(7):1239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jan;45(2):133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2009 Dec;41(12):1275-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19881527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2005 May;7(3):283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15912448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1996 Sep;31(6):1233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8914539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jan 29;457(7229):551-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19189423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Feb;72(3):247-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19876746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1998 Dec;5(12):1084-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9846879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2007 Oct 31;55(22):9208-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17907770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Oct;148(2):993-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18715958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jan 14;463(7278):178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20075913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 1997 Aug;45(7):1309-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9237394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Mar;21(6):1035-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8098228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 Sep;28(9):951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 Jul;65(13):1879-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15279994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Oct;234(4):799-813</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21633811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Oct;100(2):677-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16653046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2007;12(8):1569-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17960074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Oct;109(2):525-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7480344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011;11:136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21995777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2011 Sep;165(2):397-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21523355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jan 4;319(5859):64-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12960376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Sep;61(14):3983-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20616156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2009 Nov;10(6):631-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19933210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jul 9;329(5988):223-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20616280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19619287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
<name sortKey="Taylor, John S" sort="Taylor, John S" uniqKey="Taylor J" first="John S" last="Taylor">John S. Taylor</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Tran, Lan T" sort="Tran, Lan T" uniqKey="Tran L" first="Lan T" last="Tran">Lan T. Tran</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002883 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002883 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22897796
   |texte=   The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22897796" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020